新闻信息
通知公告
学院要闻
学术信息
教育教学
首页
>
学术信息
>
正文
方海教授团队在《Composite Structures》发表研究论文

304am永利集团方海教授团队在国际权威学术期刊《Composite Structures》(中科院一区TOP期刊,IF=6.603)上发表题为“Low-velocity impact properties of foam-filled composite lattice sandwich beams: Experimental study and numerical simulation”的研究论文。2022级博士研究生陈忱为该论文的第一作者,方海教授为通讯作者。该项研究得到了国家自然科学基金(编号:52078248)的资助。

Low-velocity impact properties of foam-filled composite lattice sandwich beams: Experimental study and numerical simulation

Chen Chen, Hai Fang*, Lu Zhu, Juan Han, Xiaolong Li, Zhen Qian, Xinchen Zhang

Abstract

This paper studies the low-velocity impact properties of foam-filled composite lattice sandwich beams. The effects of transverse and longitudinal lattice-web spacing, lattice-web thickness, foam density, foam thickness, impact height and impact position on the impact resistance of the sandwich beam were investigated. Experimental results showed that the failure modes of the sandwich beams mainly included buckling of lattice web, skin fiber fracture, interfacial delamination between skin and foam, shear failure of foam, foam indention, and foam crushing. With the reduction of the longitudinal lattice-web spacing, the maximum impact force increased by 136.92%, and the maximum vertical displacement decreased by 51.46% for the simply supported specimen. With the increase of the web thickness, the maximum impact force of the specimen increased by 33.40% for the specimen on the rigid support. Furthermore, a numerical model was built and parametric analysis (skin thickness, foam density, and boundary conditions) on the properties of the sandwich beam was also conducted. Parametric analysis showed that the energy absorbed by foam of specimen on the rigid support was 110.39% more than that of the simply supported specimen.

文章在线网址:https://doi.org/10.1016/j.compstruct.2022.116573

作者:304am永利集团;审核:张涛、方海


地址:中国江苏省南京市江北新区浦珠南路30号
邮编:211800        网站:www.gdzydjk.com
扫一扫关注“304am永利集团嘉木之音”

Copyright @ 2021 304am永利集团(皇宫)俱乐部-Dream It Possible All Right Reserved

Baidu
sogou